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Loi d’action-réaction, collisions

Au chapitre 2, on a énoncé les deux premieres lois de Newton qui déterminent la dynamique
d’un point matériel. Dans la premiere section de ce chapitre, on va énoncer la 3¢ loi de Newton
qui détermine l'interaction dynamique entre des points matériels au sein d’un systéme. Dans
la deuxieme et la troisieme partie de cette section, on abordera 1’étude des collisions entre
des points matériels au sein d’un systeme de points matériels.

8.1 Loi d’action-réaction

La 3¢ loi de Newton appelée aussi loi d’action-réaction décrit I'interaction entre
deux ou plusieurs points matériels. Un ensemble de deux ou plusieurs points matériels en
interaction est appelé un systéme de points matériels. Dans le cas d’un systéme de points
matériels, il faut distinguer les forces extérieures F ' exercées sur les points matériels
P, par l'extérieur des forces intérieures F;L“t exercées sur les points matériels P, par
les autres points matériels du systéeme. Les deux premieres lois de Newton sont définies en
termes de forces extérieures exercées sur un point matériel. Ces lois restent valables pour un
systeme de points matériels.

8.1.1 3° loi de Newton

La 3° loi de Newton est énoncée par Newton dans ses Principia Mathematica de la
maniere suivante :

L’action est toujours égale a la réaction ; c’est-a-dire que les actions de deux corps l'un
sur lautre sont toujours égales et de sens contraire.

En termes plus modernes, on dirait simplement :

. L. . 152 . L. .

Un point matériel 1 qui exerce une force F 7% sur un point matériel 2 subit une force
, . 231 . s o2 Py . . . .

de réaction F 7" d’intensité égale, de méme direction et de sens opposé, exercée par

le point matériel 2.

La 3¢ loi de Newton s’écrit donc simplement comme,

F1—>2 +F2—>1 — 0 (81)

8.1.2 Forces intérieures et extérieures

Pour illustrer la différence entre des forces intérieures et extérieures, on considere un
systeme constitué de deux points matériels de masses égales reliées entre elles par un fil
de masse négligeable passant par deux poulies. Si les masses sont égales, le systéeme est a
I’équilibre. On peut virtuellement décomposer le systéeme en deux. Evidemment, la force
F 271 exercée par le point matériel 2 sur le fil sera égale et opposée & la force F 172 exercée

Isaac Newton
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par la masse 1 sur le fil en vertu de la 3¢ loi de Newton. Ainsi, la résultante des forces
d’action et de réaction est nulle (Fig. 8.1).
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FIGURE 8.1 Les forces F172 et 27! sont intérieures au systéme alors que les poids P
et P sont des forces extérieures.

Les notions de forces intérieures et extérieures dépendent du choix de systéme de points
matériels. Pour le systéme formé des deux points matériels, les forces d’interaction F'172 et
F 27! sont des forces intérieures. Pour chaque sous-systéme formé d’un seul point matériel,
les forces d’interaction F'172 et 271 sont des forces extérieures. En revanche, comme les
poids des poids matériels Py et Py sont dus a 'interaction gravitationnelle de la terre, ce
sont des forces extérieures pour le systeme et les deux sous-systemes.

Dans le cas général, le poids n’est pas toujours une force extérieure. Par exemple, si le
systeme est la terre et un avion, alors le poids de ’avion est une force intérieure au systeme.
Si le systeme est 'avion sans la terre, le poids est une force extérieure. Comme autre exemple
de force intérieure, on peut mentionner les forces de cohésion exercées entre les atomes au
sein d’un solide.

Pour illustrer la différence entre des forces extérieures et intérieures, on prend un chariot
contenant un cylindre rempli d’eau pouvant rouler sur un rail horizontal : ’eau s’écoule du
bas du réservoir avec une quantité de mouvement horizontale a la sortie en raison de la
pression de la colonne d’eau (Fig. 8.1). Dans un premier cas, le chariot n’est pas attaché
a un wagon récepteur. Dans ce cas, en absence de wagon récepteur, la force exercée par
I’eau qui s’écoule du chariot est une force extérieure qui provoque le déplacement du chariot
dans la direction opposée a ’écoulement. Dans un deuxieme cas, le chariot est attaché a
un wagon récepteur. Dans ce cas, la force exercée par I'’eau qui s’écoule du chariot dans le
wagon récepteur est une force d’interaction intérieure au systéme formé du chariot et du
wagon. D’apres la loi d’action-réaction, elle est égale et opposée a la force exercée par 1’eau
sur le wagon récepteur. Par conséquent le systéme est immobile.

FIGURE 8.2 Le chariot se déplace dans le sens opposé a ’écoulement de ’eau en absence
de wagon. Si ’eau s’écoule dans un wagon récepteur accroché au chariot, ’ensemble reste
immobile.

8.1.3 Conservation de la quantité de mouvement

Un systeme de points matériels est isolé s’il n’y a pas d’interaction avec l'extérieur. En
mécanique, il n’y a pas de force extérieure agissant sur un systéme isolé. On considére un
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systeme constitué de deux points matériels 1 et 2 en interaction. Soit p; et p, les quantités
de mouvement de ces points matériels et F 172 et F 271 les forces d’interaction exercées par
un point matériel sur autre. La loi du mouvement (2.32) appliquée séparément & chaque
sous-systeme formé d’un point matériel s’écrit,

F>7l=p et F'7?P=p, (8.2)

Compte tenu des lois du mouvement (8.2) et de la 3¢ loi de Newton (8.1), la variation de la
quantité mouvement totale du systeme p = p; + p, s’écrit,

p=p+p,=F> 7' +F'7?=0 (8.3)

Par conséquent, pour un systeme isolé ou un systeme pour lequel la force résultante est
nulle, la quantité de mouvement totale est conservée,

p = cste (systeme isolé) (8.4)

Cette loi de conservation joue un role treés important en physique et en particulier dans
I’étude des collisions.

A titre d’exemple, on peut mentionner le mouvement d’un étudiant sur un chariot. Lorsque
I’étudiant monte sur le chariot, le poids P du systeme formé de ’étudiant et du chariot est
compensé par la force de réaction normale IN exercée par le sol,

Z F*=P+N=p=0 ainsi p = cste (8.5)

Par conséquent, la quantité de mouvement totale p du systéeme est conservée. L’étudiant
et le chariot sont initialement immobiles par rapport au référentiel d’inertie de ’auditoire,
c’est-a~dire que la quantité de mouvement totale du systéme constitué de 1’étudiant et du
chariot est nulle en tout temps,

pP=p;+p,=0 ainsi Do =—P1 (8-6)

Ainsi, I'étudiant se déplace avec une quantité de mouvement p, vers la droite, le chariot se
déplace avec une quantité de mouvement opposée p, = —p; vers la gauche et vice versa
afin que la quantité de mouvement totale du systéeme reste nulle en vertu du principe de
conservation de la quantité de mouvement totale (Fig. 8.3).

FIGURE 8.3 Par conservation de la quantité de mouvement totale, lorsqu’un étudiant se
déplace sur le chariot ce dernier se déplace dans le sens contraire.

8.1.4 Chariot propulsé par un boulet

Un chariot de masse M contenant des rails fixés sur une rampe peut se déplacer horizon-
talement sur le sol. Un boulet de masse m est déposé initialement au haut de la rampe sur le
coté gauche du chariot (Fig. 8.4). Le chariot et le boulet sont considérés comme des points
matériels. Comme le mouvement du chariot est horizontal et que le mouvement du boulet a
lieu le long de la rampe dans le plan vertical, on décrit la dynamique du chariot et du boulet
dans le référentiel du sol & l'aide du repere cartésien (&,4) en choisissant trois systémes
différents : premierement le chariot et le boulet, deuxiéemement le boulet et troisiemement
le chariot.

Chariot et boulet
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FIGURE 8.4 Le systéeme formé du chariot du masse M et du boulet de masse m est soumis
a son poids P = (M + m) g et a la force de réaction normale du sol N.

Premieérement, on choisit comme systeéme le chariot et le boulet (Fig. 8.4). Ce systéme est
soumis & deux forces extérieures, son poids et la force de réaction normale du sol,

P=(M+m)g=—(M+m)gg et N=N¢g (chariot et boulet) (8.7)
La quantité de mouvement totale du systeme est,
P=DsT+py Y (chariot et boulet) (8.8)
La loi vectorielle du mouvement (2.17) s’écrit,

Z F*=P+N=p (chariot et boulet) (8.9)

En projetant la loi vectorielle du mouvement (8.9) selon les lignes de coordonnées
cartésiennes de vecteurs unitaires & et ¢ respectivement, compte tenu des forces
extérieures (8.7) et de la quantité de mouvement (8.8), on obtient les deux équations scalaires
suivantes,

selon £: 0=27p,

A | (5.10)
selon g: — (M+m)g+N=p,

On conclut que la composante horizontale de la quantité de mouvement totale p,, qui est
initialement nulle, reste nulle durant tout le mouvement puisque les deux forces extérieures
n’ont pas de composante horizontale. De plus, la composante horizontale de la quantité de
mouvement totale p, est la somme des composantes horizontales des quantités de mouvement
du chariot M V, et du boulet mv,,

Py =cste =0 ainsi Do = MVy +mu, =0 (chariot et boulet) (8.11)

Etant donné que le chariot descend le long des rails sur la rampe inclinée vers la droite avec
une vitesse de composante horizontale v, > 0, on en conclut que la composante horizontale
de la vitesse V,, du chariot est de signe opposé, c’est-a-dire qu’il se déplace vers la gauche,

V, = — % vy <0 (8.12)

La projection de la loi du mouvement (8.10) selon la ligne de coordonnée verticale montre
que la composante verticale de la quantité de mouvement p, n’est pas constante car la
composante verticale de la somme des forces extérieures est non-nulle.

Deuxiémement, on choisit comme systéme le boulet (Fig. 8.5). Le boulet est soumis &
deux forces extérieures, son poids P,, = m g et la force de réaction normale du chariot IN.
La loi vectorielle du mouvement (2.17) s’écrit,

Z F* =P, +N =ma,, (boulet) (8.13)

ou l'accélération a,, du boulet est tangente a la surface du chariot puisque le boulet se
déplace le long des rails. la force de réaction normale N’ exercée par le chariot est une force
extérieure au sous-systeéme du boulet mais une force intérieure au systéme formé du chariot
et du boulet.

Troisiemement, on choisit comme systéme le chariot (Fig. 8.5). Le chariot est soumis &
trois forces extérieures, son poids Py; = M g, la force de réaction normale du sol IN et la



8.2. COLLISIONS 103

N/
p N ?:zg

FIGURE 8.5 Le boulet de masse m est soumis a son poids P,, = mg et a la force de
réaction normale du chariot N’. Le chariot de masse M est soumis & son poids Py = M g
et aux forces de réaction normale du sol IN et du boulet — N”.

force de réaction normale exercée par le boulet — IN’, qui est 'inverse de la force de réaction
normale exercée par le chariot sur le boulet N’ en vertu de la troisieme loi de Newton (8.1).
La loi vectorielle du mouvement (2.17) s’écrit,

Z F* =Py, +N— N =may (chariot) (8.14)

Les équations vectorielles du mouvement sont linéairement dépendantes : ’équation du
mouvement du systeme formé du chariot et du boulet (8.9) est la somme vectorielle des
équations du mouvement du boulet (8.13) du chariot (8.14). Pour le mettre en évidence, on
écrit le poids P du systéme formé du chariot et du boulet comme la somme des poids du
chariot Pj; et du boulet P,,,

P=Py—+P, (chariot et boulet) (8.15)

En sommant les équation du mouvement (8.13) du chariot (8.14) les forces des réactions
normales N’ et — IN’ entre le chariot et le boulet sont des forces intérieures qui se compensent
en vertu de la troisieme loi de Newton (8.1). On en conclut que la dérivée temporelle de la
quantité de mouvement totale p est la somme des produits des masses et accélérations du
chariot et du boulet,

p=Mapy +ma, (chariot et boulet) (8.16)

8.2 Collisions

8.2.1 Types de collision

Les collisions entre des points matériels sont caractérisées par un choc qui conserve la
quantité de mouvement totale du systeme. En général, dans le modele le plus simple, on peut
considérer que les points sont en mouvement rectiligne uniforme et que durant un temps
trés court, lorsque le choc a lieu, il y a une discontinuité de la quantité de mouvement. Il y
a deux types de collisions qu’il s’agit de distinguer, des collisions élastiques d’une part
et des collisions inélastiques d’autre part. Les collisions élastiques conservent 1’énergie
cinétique du systeme et les collisions inélastiques ne la conservent pas. Il existe toutes sortes
de collisions comme celle de deux boules de billard ou celle de particules fondamentales dans
le détecteur de I'expérience CMS de laccélérateur de particules LHC, c’est-a-dire Large
Hadron Collider, au CERN.

La durée d'un choc est tres courte. On peut la mesurer par exemple en frappant avec
un marteau sur une enclume en acier ou sur un bloc de plomb. Le circuit électrique est
fermé lorsque le marteau est en contact avec I’enclume ou le bloc. Le résultat est visualisé
sur un oscilloscope. Comme ’enclume est plus dure que le bloc, le choc est plus court avec
I’enclume qu’avec le bloc parce qu’un matériau plus dur se déforme moins et donne donc
lieu & un choc plus élastique qu’un matériau plus mou (Fig. 8.6). La durée du choc entre le
marteau et I’enclume ou entre le marteau et le bloc de plomb, qui est de 'ordre de grandeur
de 0.1 — 10 ms est suffisamment courte pour qu’on puisse raisonnablement considérer que la
variation de quantité de mouvement a lieu durant un intervalle de temps infinitésimal dt.

Expérience CMS -
CERN


https://www.youtube.com/watch?v=S99d9BQmGB0

104 CHAPITRE 8. LOI D’ACTION-REACTION ET COLLISIONS

FIGURE 8.6 Mesure de durée d’un choc entre un marteau et une enclume ou un marteau
et un bloc de plomb.

A titre d’exemple, on peut mentionner I'impulsion transmise & une cible par une balle de
fusil ou Deffet de recul d’un glisseur sur un rail & air lors du tir d’un projectile (Fig. 8.7).

FIGURE 8.7 Lors du choc de la balle de fusil contre la cible en bois, une partie de la
quantité de mouvement est transmise au bois, ce qui fait osciller la cible, contrairement
au verre qui se brise. Lors de ’explosion du combustible (H3) le glisseur subit un effet de
recul pour que la quantité de mouvement totale soit conservée.

8.2.2 Choc élastique

On considere un choc élastique ou une collision élastique entre deux points matériels de
masse mj et mq respectivement. Dans un systeme isolé, un choc élastique entre deux points
matériels est caractérisé par la conservation de la quantité de mouvement totale,

p = p; +p, = cste (8.17)
et par la conservation de 1’énergie cinétique totale,
T =T, + Ty = cste (8.18)

Dans le référentiel au repos du deuxieme point matériel, le premier point matériel se déplace
initialement selon un axe horizontal Oz et le second point matériel est initialement au repos
(Fig. 8.8),

P1; = Dii T et Py =0 ainsi Py =0 et Ty, =0 (819)

Compte tenu de la condition initiale, les bilans de la quantité de mouvement et de 1’énergie
cinétique juste avant et juste apres le choc s’écrivent,

P =P1; = Piy + Pay (8.20)
T =Ty =T+ Ty (8.21)

En projetant I’équation vectorielle du bilan de quantité de mouvement (8.20) selon les lignes
de coordonnées cartésiennes de vecteurs unitaires & et § respectivement, on obtient les deux
équations scalaires suivantes,

~

selon Cf Cop = plf.cos 01 + pgf.COS 0 (8.22)
selon §: 0=pirsinf; — passinbs
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FIGURE 8.8 Choc élastique d’'un point matériel de quantité de mouvement initiale p,;
contre un point matériel initialement au repos, c’est-a-dire p,; = 0. Les quantités de
mouvement finales p, ; et p,, sont dans le plan Ozy.

En élevant au carré les équations (8.22), on obtient,

selon &: (p1; — pifcos 91)2 = pgf cos? 65 (8.23)
selon ¢ : pff sin®0; = pgf sin® 6, )
La somme des équations (8.23) s’écrit,
(p1i — prycostr)® +plpsin® 6y = p3, (8.24)
L’énergie cinétique (6.57) s’écrit en termes de la quantité de mouvement (2.29) comme,
1 p?
T=-mv="— 8.25
2" T om (8.25)
Ainsi, équation de bilan de 1’énergie cinétique (8.21) peut étre exprimée comme,
2 2 2
b _ Py Poy
= 8.26
2m1 2m1 + 2m2 ( )
ce qui implique que,
ma
P%f = mil (Pi - P%f) (8.27)
L’identification des équations (8.24) et (8.27) donne,
ma 2 .
my (PRi = Piy) = (pri = pay cos61) + piysin® 6y (8.28)
qui est remis en forme comme,
mo 2 mao 2
14— — 2py; cosf 1- — ;=0 8.29
< +m1)P1f Diip1y 1+< ml)Pn (8.29)

En divisant équation (8.29) par (1 + msg/m1) p?;, on obtient une équation quadratique en
p1f/Pris

2
2 —
<p1f> _2m o (Plf) L me (8.30)
D1i my + ma D1i my + ma
Les solutions de ’équation quadratique (8.30) sont,

2
pipo vy vy 008291_( _mz) (8.31)

Pi Mavy o v ma+me m2

Masses égales
On considére le cas particulier ou les masses sont égales, c’est-a-dire m; = msy. Dans
ce cas, le principe de conservation de la quantité de mouvement (8.20) et le principe de
conservation de 1'énergie cinétique (8.21) se réduisent 4,

V1 = Vif + Vaf (8.32)
vl; = vi; + vl (8.33)
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En élevant au carré I’équation (8.32), on obtient,

’U%i:’U%f‘i‘Q’Ulf"UQf""U%f (8.34)

La différence entre les équations (8.34) et (8.33) se réduit & la condition,
si vig#0 et wvar #0 alors 91+92:E

vif vy =0  ainsi 2 (8.35)
si vy =0 alors vy = vy

A titre d’exemple, on peut mentionner la collision entre deux pucks de masse égale sur une
table & air horizontale (Fig. 8.9). En réalité, dans cet exemple I'angle entre les pucks est
légerement inférieur a 90° du a la rotation propre des pucks.

-

FIGURE 8.9 Le puck bleu lancé depuis la gauche heurte le puck blanc initialement au repos.
Apres le choc, I'angle entre les trajectoires des deux pucks est légeérement inférieur & 90°.

Choc rectiligne
On considere un choc élastique qui a lieu en ligne droite, c’est-a-dire 6; = 6, = 0. Pour
un tel choc, cosf; = cosfy = 1, et ’équation (8.31) se réduit a,

2

+
iy _ <1i /1_( _m§>>:m1 2 (8.36)
V14 mi + mo mi m1 + ma

La solution mathématique (8.36) avec le signe + est & rejeter car si la vitesse finale vy du
point matériel 1 était égale & sa vitesse initiale vy;, cela signifierait que le choc est virtuel!
Par conséquent, la solution physique s’écrit,

Vif = ———— Uy, (8.37)

L’expression (8.27) de la conservation de 1’énergie cinétique peut étre écrite comme,

1 1 1
5 m v = 5 m v%f +5me vgf (8.38)
ce qui donne le carré de la vitesse finale du deuxieéme point matériel,
2 mi o2 2
= — (vi; — 8.39
Uay s (Ulz U1f) ( )

En substituant I’équation (8.37) dans I’équation (8.39),on obtient,

4m?

2 1 2

Vyp = ——————5 Uy, 8.40
2f (mq + mg)2 ! ( )

Ainsi, on prenant la racine carrée de la relation (8.40), on obtient,
le
Vof = —————— Wy, 8.41
2 = b, (8.41)
A Taide des expressions (8.37) et (8.41), on examine maintenant deux cas particuliers de
chocs rectilignes :
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1) masses égales : m1 =mgy ainsi wvip=0 et v =0y

2) masse infinie : mi/mg — 0 ainsi vy = —vi; et v =0

Le premier cas correspond au choc rectiligne entre deux boules de billard ou entre deux
boules métalliques de méme masse, et aussi au choc élastique rectiligne entre deux pucks de
méme masse sur une table a air horizontale ou entre deux glisseurs de méme masse sur un
rail & air horizontal (Fig. 8.10). Le deuxiéme cas correspond au choc élastique d’une balle
en chute libre contre le sol ou d’une molécule contre la paroi d’un récipient.

FI1GURE 8.10 Choc élastique rectiligne entre deux pucks sur une table & air horizontale.
Choc élastique entre deux glisseurs sur un rail & air horizontal.

8.2.3 Choc mou

Un choc parfaitement inélastique, aussi appelé choc mowu, entre deux points matériels est
un choc apres lequel les deux points matériels restent attachés I'un a I'autre. Un tel choc pro-
voque une perte d’énergie cinétique. On considere un choc mou entre deux points matériels
de masse mi et my respectivement. Le premier point matériel se déplace initialement selon
un axe horizontal Ox et le second point matériel est initialement au repos donc sa quan-
tité de mouvement initiale est nulle, c’est-a-dire p, = 0, et son énergie cinétique est nulle
également, c’est-a-dire Ty = 0, dans le référentiel d’inertie choisi. Apres le choc, la quantité
de mouvement totale du systeme est p; et I'énergie cinétique totale est T (Fig. 8.11). Le

Initial Final
2 py,=0 Py
® o » T ° @ - » T
my my my + my

FIGURE 8.11 Choc mou d’un point matériel de quantité de mouvement initiale p, contre
un point matériel initialement au repos, c’est-a-dire p, = 0. La quantité de mouvement
finale est p;.

principe de conservation de la quantité de mouvement durant le choc s’écrit,
P1 + Dy =Dy ol P, =10 ainsi P1 =Dy (8.42)

Le principe de conservation de la quantité de mouvement (8.42) peut étre mis sous la forme,

miv1 = (mq +ma) vy (8.43)

On en déduit la vitesse finale du systeme
my
vfp=—"—"-"—0 8.44
P o s (8.44)
L’énergie cinétique initiale T; du point matériel 1 est,
1
Ti=5m vi (8.45)
et 'énergie cinétique finale Ty du systeme est,

1

Choc élastique
rectiligne
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Coefficients de
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Compte tenu des énergies cinétiques initiale (8.45) et finale (8.46), on en conclut que la
variation d’énergie cinétique est négative,
1 m% 9

1
AT, e=T— T = - ———v] — = v? =
=t ! 173 my + mo ! 2m1 !

1 mimso 2
S — 0 8.47
2 mi + mo “1 < ( )

Ainsi, le choc mou est un processus dissipatif qui provoque une perte d’énergie cinétique.
Cette énergie est utilisée principalement pour déformer 1'objet, comme une boule en pate
a modeler par exemple. Comme exemple de choc mou, on peut mentionner le choc entre
deux glisseurs qui restent accrochés parce la pointe de I'un vient s’enfoncer dans de la pate
a modeler fixée sur 'autre (Fig. 2.8).

8.2.4 Coefficient de restitution

Les chocs élastiques et les chocs mous sont des cas particuliers de tout un ensemble de
chocs possibles. L’élasticité d’un choc contre un objet de masse infinie peut étre quantifiée
par le coefficient de restitution défini comme le rapport de la norme de la vitesse finale
et de la norme de la vitesse initiale d’un corps,

oy
e = (8.48)
il

Il existe trois types de collisions ou de chocs :
1) élastique : e =1
2) inélastique : 0 < e < 1

3) mou:e=0

FIGURE 8.12 Chocs inélastiques d’une balle de tennis (e ~ 0.90) et d’un ballon de basket
contre le sol (e & 0.85).

A titre d’exemple, on peut mentionner les chocs inélastiques d’une balle de tennis ou d’un
ballon de basket contre le sol (Fig. 8.12). Plus le matériau est dur, moins il se déformera
durant le choc et donc plus le coefficient de restitution sera grand.

8.3 Probleme a deux corps

Les systemes a deux corps sont tres courant en mécanique. On peut mentionner le mouve-
ment de la lune autour de la terre, celui de la terre autour du soleil, le mouvement d’étoiles
binaires ou méme le mouvement d’un électron et d’'un proton dans un atome d’hydrogene.
La dynamique d’un systeme constitué de deux corps, que 'on peut assimiler a des points
matériels, en absence de force extérieure présente des propriétés de symétrie qu’on cherche
a découvrir. On commence par décrire la dynamique de chaque point matériel par rapport
a un référentiel d’inertie quelconque.

8.3.1 Loi du mouvement réduit

On considere un systeme isolé formé de deux corps considérés comme des points matériels.
Soit r1 le vecteur position du point matériel de masse my et ro le vecteur position du point
matériel de masse my (Fig. 8.13).
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1—2
m, F2-1 F

référentiel

FI1GURE 8.13 Probleme a deux corps de masse mi et ma considérés comme des points
matériels.

Les lois du mouvement (2.32) appliquées aux sous-systeémes des deux points matériels sont
les suivantes :

FP7l—mi, et F'72=myin (8.49)

ot les forces d’interaction F 271 et F172 sont des forces intérieures au systéme constitué
des deux points matériels mais elles sont considérées comme des forces extérieures & chaque
sous-systeme constitué d’un seul point matériel. Ces deux forces d’interaction sont de nature
quelconque et elles satisfont la loi d’action-réaction (8.1). Pour repérer la position des deux
points matériels, il faut deux vecteurs : 71 et ro. Comme les lois du mouvement (8.49) sont
indépendantes du choix de 'origine O du systéme d’axes, on peut faire un changement de
variables qui définit de nouveaux vecteurs positions qui rendent mieux compte des symétries
du mouvement. On définit le vecteur position du centre de masse Rg du systeme des

deux points matériel comme,

m m
Rg = ﬁl T+ ﬁ? o (8.50)

et le vecteur position relative r du point matériel 1 par rapport au point matériel 2 de la
maniere suivante,

r=7r1— Ty ou M =mq+ mo (851)

Le centre de masse est le centre de gravité du systeme qui sera défini explicitement pour
un systeme de points matériels lorsqu’on abordera 1’étude de la dynamique du solide
indéformable. En dérivant deux fois par rapport au temps les équations (8.50) et (10.21), on
obtient les équations suivantes,

MRG =mi ’Fl + mo ’;:2 et 7= ’i:l — ’l'”:g (852)

En prenant la somme des lois du mouvement (8.49), compte tenu des identités (8.52), on
obtient,

F>7l 4 P72 =y # + ma s = M Rg (8.53)

D’apres la 3¢ loi de Newton (8.1), on en conclut alors,

Ro=0 ainsi Vo = Rg = cste (8.54)
ce qui signifie que le centre de masse du systeme est en mouvement rectiligne uniforme ou au
repos en absence de force extérieure au systeme. La masse réduite p du systeme est définie
comme,

1 1 1 mi1 meo mi meo

—_ = — + _ ainsi = = 855
12 my mo H mi + mo M ( )

En prenant la différence de la premiere loi du mouvement (8.49) multipliée par ms et de la
deuxieéme multipliée par m; compte tenu de la masse réduite (8.55), on obtient,

mo Fzﬁl — m 1’7114)2 =mims (’I"l - ’I°2) = M‘LLT‘ (856)
Compte tenu de la 3° loi de Newton (8.1),
ma F?*70 — my F'7% = (mgy +my) F?7 = MF?7! (8.57)
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En identifiant les membres de droites des relations (8.56) et (8.57) divisés par la masse totale
du systeme M, on obtient la loi du mouvement réduit,

F27h = ¢ (8.58)

Ainsi, le mouvement du probléme & deux corps isolés se réduit au mouvement rectiligne
uniforme du centre de masse et au mouvement réduit d’un objet de masse réduite p autour
du point matériel 2 pris comme référence. De maniere alternative, on définissant le vecteur
position relative comme r = r5 — 71, on aurait tout aussi bien pu prendre le point matériel
1 comme référence.

8.3.2 Quantité de mouvement et énergie cinétique

La quantité de mouvement totale p et 1’énergie cinétique totale T' du systeme de deux
points matériels s’écrivent,

P =my v +ma U2 (8.59)
1 1
T=gm v+ 32 v3 (8.60)

En inversant les vecteurs position (8.50) et (10.21), compte tenu de la définition de la masse
réduite (8.55), on obtient,

r1:RG+Lr et ro = Rg — Loy (8.61)
mi ma

Les dérivées temporelles des positions (8.61) donnent les vitesses,
vleg—i—Lv et vy = Vg — Lv (8.62)
mq ma
En substituant les vitesses (8.62) dans 'expression (8.59) de la quantité de mouvement
totale, celle-ci devient,

p=(m1+mg) Vo =MVg (8.63)

En substituant les équations (8.62) dans l’expression (8.60) de I’énergie cinétique, celle-ci
devient,

1 S| ?
T2m1<VG+uv> +2m2<VGuv>
m 2 (8.64)

1 s 1/1 1 9 9
=-(mi+m2) Vg + - | —+— v
2( ! 2) Ve 2<m1 mg)'u
Compte tenu de la définition de la masse réduite (8.55), l'expression de D’énergie
cinétique (8.64) se réduit a,
1 1
T:§MVC§+§/“;2 (8.65)
ou le premier terme est ’énergie cinétique constante associée au mouvement du centre de
masse et le deuxieme terme est I’énergie cinétique associée au mouvement réduit.

8.3.3 Référentiel du centre de masse

Comme le mouvement du centre de masse est un mouvement rectiligne uniforme, on peut
faire une transformation de coordonnées et définir les vecteurs positions r) et r} relatifs au
référentiel du centre de masse qui, compte tenu des relations (8.61), s’écrivent,

0 0

rin=ri1— Rgc=-—7r e rh=r9— Rg=——r (8.66)
my ma
La dérivée temporelle des relations (8.66) est donnée par,
v = Fou et vh = — Loy (8.67)

mi ma
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Compte tenu des expressions (8.66) des vitesses relatives au référentiel du centre de masse,
la quantité de mouvement totale p’ relative au référentiel du centre de masse est nulle,

p'=mi v +myvy =0 (8.68)

Compte tenu des expressions (8.66) des vitesses relatives au référentiel du centre de masse et
de 'expression (8.55) de la masse réduite, I’énergie cinétique totale T relative au référentiel
du centre de masse s’écrit,

1 1 1/ 1 1 1
T =-mv2+-movh? == —+ — ) p2v? == po? 8.69
5 M1 vy 5 M2 2 \my "y 9 H ( )
L’énergie cinétique T contient un terme de plus que I’énergie cinétique T”. Ce terme corres-
pond a I’énergie cinétique associée au mouvement du centre de masse du systeme.
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