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Loi d’action-réaction, collisions

Au chapitre 2, on a énoncé les deux premières lois de Newton qui déterminent la dynamique

d’un point matériel. Dans la première section de ce chapitre, on va énoncer la 3e loi de Newton

qui détermine l’interaction dynamique entre des points matériels au sein d’un système. Dans

la deuxième et la troisième partie de cette section, on abordera l’étude des collisions entre

des points matériels au sein d’un système de points matériels.

8.1 Loi d’action-réaction

La 3e loi de Newton appelée aussi loi d’action-réaction décrit l’interaction entre

deux ou plusieurs points matériels. Un ensemble de deux ou plusieurs points matériels en

interaction est appelé un système de points matériels. Dans le cas d’un système de points

matériels, il faut distinguer les forces extérieures F ext
α exercées sur les points matériels

Pα par l’extérieur des forces intérieures F int
α exercées sur les points matériels Pα par

les autres points matériels du système. Les deux premières lois de Newton sont définies en

termes de forces extérieures exercées sur un point matériel. Ces lois restent valables pour un

système de points matériels.

8.1.1 3e loi de Newton

La 3e loi de Newton est énoncée par Newton dans ses Principia Mathematica de la

manière suivante :

L’action est toujours égale à la réaction ; c’est-à-dire que les actions de deux corps l’un

sur l’autre sont toujours égales et de sens contraire.

En termes plus modernes, on dirait simplement :

Un point matériel 1 qui exerce une force F 1→2 sur un point matériel 2 subit une force

de réaction F 2→1 d’intensité égale, de même direction et de sens opposé, exercée par

le point matériel 2.

Isaac Newton
La 3e loi de Newton s’écrit donc simplement comme,

F 1→2 + F 2→1 = 0 (8.1)

8.1.2 Forces intérieures et extérieures

Pour illustrer la différence entre des forces intérieures et extérieures, on considère un

système constitué de deux points matériels de masses égales reliées entre elles par un fil

de masse négligeable passant par deux poulies. Si les masses sont égales, le système est à

l’équilibre. On peut virtuellement décomposer le système en deux. Evidemment, la force

F 2→1 exercée par le point matériel 2 sur le fil sera égale et opposée à la force F 1→2 exercée

https://fr.wikipedia.org/wiki/Isaac_Newton
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par la masse 1 sur le fil en vertu de la 3e loi de Newton. Ainsi, la résultante des forces

d’action et de réaction est nulle (Fig. 8.1).
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Figure 8.1 Les forces F 1→2 et F 2→1 sont intérieures au système alors que les poids P 1

et P 2 sont des forces extérieures.

Les notions de forces intérieures et extérieures dépendent du choix de système de points

matériels. Pour le système formé des deux points matériels, les forces d’interaction F 1→2 et

F 2→1 sont des forces intérieures. Pour chaque sous-système formé d’un seul point matériel,

les forces d’interaction F 1→2 et F 2→1 sont des forces extérieures. En revanche, comme les

poids des poids matériels P 1 et P 2 sont dus à l’interaction gravitationnelle de la terre, ce

sont des forces extérieures pour le système et les deux sous-systèmes.

Dans le cas général, le poids n’est pas toujours une force extérieure. Par exemple, si le

système est la terre et un avion, alors le poids de l’avion est une force intérieure au système.

Si le système est l’avion sans la terre, le poids est une force extérieure. Comme autre exemple

de force intérieure, on peut mentionner les forces de cohésion exercées entre les atomes au

sein d’un solide.

Pour illustrer la différence entre des forces extérieures et intérieures, on prend un chariot

contenant un cylindre rempli d’eau pouvant rouler sur un rail horizontal : l’eau s’écoule du

bas du réservoir avec une quantité de mouvement horizontale à la sortie en raison de la

pression de la colonne d’eau (Fig. 8.1). Dans un premier cas, le chariot n’est pas attaché

à un wagon récepteur. Dans ce cas, en absence de wagon récepteur, la force exercée par

l’eau qui s’écoule du chariot est une force extérieure qui provoque le déplacement du chariot

dans la direction opposée à l’écoulement. Dans un deuxième cas, le chariot est attaché à

un wagon récepteur. Dans ce cas, la force exercée par l’eau qui s’écoule du chariot dans le

wagon récepteur est une force d’interaction intérieure au système formé du chariot et du

wagon. D’après la loi d’action-réaction, elle est égale et opposée à la force exercée par l’eau

sur le wagon récepteur. Par conséquent le système est immobile.

Figure 8.2 Le chariot se déplace dans le sens opposé à l’écoulement de l’eau en absence
de wagon. Si l’eau s’écoule dans un wagon récepteur accroché au chariot, l’ensemble reste
immobile.

8.1.3 Conservation de la quantité de mouvement

Un système de points matériels est isolé s’il n’y a pas d’interaction avec l’extérieur. En

mécanique, il n’y a pas de force extérieure agissant sur un système isolé. On considère un
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système constitué de deux points matériels 1 et 2 en interaction. Soit p1 et p2 les quantités

de mouvement de ces points matériels et F 1→2 et F 2→1 les forces d’interaction exercées par

un point matériel sur l’autre. La loi du mouvement (2.32) appliquée séparément à chaque

sous-système formé d’un point matériel s’écrit,

F 2→1 = ṗ1 et F 1→2 = ṗ2 (8.2)

Compte tenu des lois du mouvement (8.2) et de la 3e loi de Newton (8.1), la variation de la

quantité mouvement totale du système p = p1 + p2 s’écrit,

ṗ = ṗ1 + ṗ2 = F 2→1 + F 1→2 = 0 (8.3)

Par conséquent, pour un système isolé ou un système pour lequel la force résultante est

nulle, la quantité de mouvement totale est conservée,

p = cste (système isolé) (8.4)

Cette loi de conservation joue un rôle très important en physique et en particulier dans

l’étude des collisions.

A titre d’exemple, on peut mentionner le mouvement d’un étudiant sur un chariot. Lorsque

l’étudiant monte sur le chariot, le poids P du système formé de l’étudiant et du chariot est

compensé par la force de réaction normale N exercée par le sol,∑
F ext = P +N = ṗ = 0 ainsi p = cste (8.5)

Par conséquent, la quantité de mouvement totale p du système est conservée. L’étudiant

et le chariot sont initialement immobiles par rapport au référentiel d’inertie de l’auditoire,

c’est-à-dire que la quantité de mouvement totale du système constitué de l’étudiant et du

chariot est nulle en tout temps,

p = p1 + p2 = 0 ainsi p2 = −p1 (8.6)

Ainsi, l’étudiant se déplace avec une quantité de mouvement p1 vers la droite, le chariot se

déplace avec une quantité de mouvement opposée p2 = −p1 vers la gauche et vice versa

afin que la quantité de mouvement totale du système reste nulle en vertu du principe de

conservation de la quantité de mouvement totale (Fig. 8.3).

Figure 8.3 Par conservation de la quantité de mouvement totale, lorsqu’un étudiant se
déplace sur le chariot ce dernier se déplace dans le sens contraire.

8.1.4 Chariot propulsé par un boulet

Un chariot de masse M contenant des rails fixés sur une rampe peut se déplacer horizon-

talement sur le sol. Un boulet de masse m est déposé initialement au haut de la rampe sur le

côté gauche du chariot (Fig. 8.4). Le chariot et le boulet sont considérés comme des points

matériels. Comme le mouvement du chariot est horizontal et que le mouvement du boulet a

lieu le long de la rampe dans le plan vertical, on décrit la dynamique du chariot et du boulet

dans le référentiel du sol à l’aide du repère cartésien (x̂, ŷ) en choisissant trois systèmes

différents : premièrement le chariot et le boulet, deuxièmement le boulet et troisièmement

le chariot.

Chariot et boulet
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Figure 8.4 Le système formé du chariot du masse M et du boulet de masse m est soumis
à son poids P = (M +m) g et à la force de réaction normale du sol N .

Premièrement, on choisit comme système le chariot et le boulet (Fig. 8.4). Ce système est

soumis à deux forces extérieures, son poids et la force de réaction normale du sol,

P = (M +m) g = − (M +m) g ŷ et N = N ŷ (chariot et boulet) (8.7)

La quantité de mouvement totale du système est,

p = px x̂+ py ŷ (chariot et boulet) (8.8)

La loi vectorielle du mouvement (2.17) s’écrit,∑
F ext = P +N = ṗ (chariot et boulet) (8.9)

En projetant la loi vectorielle du mouvement (8.9) selon les lignes de coordonnées

cartésiennes de vecteurs unitaires x̂ et ŷ respectivement, compte tenu des forces

extérieures (8.7) et de la quantité de mouvement (8.8), on obtient les deux équations scalaires

suivantes,

selon x̂ : 0 = ṗx

selon ŷ : − (M +m) g +N = ṗy
(8.10)

On conclut que la composante horizontale de la quantité de mouvement totale px, qui est

initialement nulle, reste nulle durant tout le mouvement puisque les deux forces extérieures

n’ont pas de composante horizontale. De plus, la composante horizontale de la quantité de

mouvement totale px est la somme des composantes horizontales des quantités de mouvement

du chariot M Vx et du boulet mvx,

px = cste = 0 ainsi px = MVx +mvx = 0 (chariot et boulet) (8.11)

Etant donné que le chariot descend le long des rails sur la rampe inclinée vers la droite avec

une vitesse de composante horizontale vx > 0, on en conclut que la composante horizontale

de la vitesse Vx du chariot est de signe opposé, c’est-à-dire qu’il se déplace vers la gauche,

Vx = − m

M
vx < 0 (8.12)

La projection de la loi du mouvement (8.10) selon la ligne de coordonnée verticale montre

que la composante verticale de la quantité de mouvement py n’est pas constante car la

composante verticale de la somme des forces extérieures est non-nulle.

Deuxièmement, on choisit comme système le boulet (Fig. 8.5). Le boulet est soumis à

deux forces extérieures, son poids Pm = m g et la force de réaction normale du chariot N .

La loi vectorielle du mouvement (2.17) s’écrit,∑
F ext = Pm +N ′ = mam (boulet) (8.13)

où l’accélération am du boulet est tangente à la surface du chariot puisque le boulet se

déplace le long des rails. la force de réaction normale N ′ exercée par le chariot est une force

extérieure au sous-système du boulet mais une force intérieure au système formé du chariot

et du boulet.

Troisièmement, on choisit comme système le chariot (Fig. 8.5). Le chariot est soumis à

trois forces extérieures, son poids PM = M g, la force de réaction normale du sol N et la
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Figure 8.5 Le boulet de masse m est soumis à son poids Pm = m g et à la force de
réaction normale du chariot N ′. Le chariot de masse M est soumis à son poids PM = M g
et aux forces de réaction normale du sol N et du boulet −N ′.

force de réaction normale exercée par le boulet −N ′, qui est l’inverse de la force de réaction

normale exercée par le chariot sur le boulet N ′ en vertu de la troisième loi de Newton (8.1).

La loi vectorielle du mouvement (2.17) s’écrit,∑
F ext = PM +N − N ′ = maM (chariot) (8.14)

Les équations vectorielles du mouvement sont linéairement dépendantes : l’équation du

mouvement du système formé du chariot et du boulet (8.9) est la somme vectorielle des

équations du mouvement du boulet (8.13) du chariot (8.14). Pour le mettre en évidence, on

écrit le poids P du système formé du chariot et du boulet comme la somme des poids du

chariot PM et du boulet Pm,

P = PM + Pm (chariot et boulet) (8.15)

En sommant les équation du mouvement (8.13) du chariot (8.14) les forces des réactions

normalesN ′ et−N ′ entre le chariot et le boulet sont des forces intérieures qui se compensent

en vertu de la troisième loi de Newton (8.1). On en conclut que la dérivée temporelle de la

quantité de mouvement totale ṗ est la somme des produits des masses et accélérations du

chariot et du boulet,

ṗ = M aM +mam (chariot et boulet) (8.16)

8.2 Collisions

8.2.1 Types de collision

Expérience CMS -

CERN

Les collisions entre des points matériels sont caractérisées par un choc qui conserve la

quantité de mouvement totale du système. En général, dans le modèle le plus simple, on peut

considérer que les points sont en mouvement rectiligne uniforme et que durant un temps

très court, lorsque le choc a lieu, il y a une discontinuité de la quantité de mouvement. Il y

a deux types de collisions qu’il s’agit de distinguer, des collisions élastiques d’une part

et des collisions inélastiques d’autre part. Les collisions élastiques conservent l’énergie

cinétique du système et les collisions inélastiques ne la conservent pas. Il existe toutes sortes

de collisions comme celle de deux boules de billard ou celle de particules fondamentales dans

le détecteur de l’expérience CMS de l’accélérateur de particules LHC, c’est-à-dire Large

Hadron Collider, au CERN.

La durée d’un choc est très courte. On peut la mesurer par exemple en frappant avec

un marteau sur une enclume en acier ou sur un bloc de plomb. Le circuit électrique est

fermé lorsque le marteau est en contact avec l’enclume ou le bloc. Le résultat est visualisé

sur un oscilloscope. Comme l’enclume est plus dure que le bloc, le choc est plus court avec

l’enclume qu’avec le bloc parce qu’un matériau plus dur se déforme moins et donne donc

lieu à un choc plus élastique qu’un matériau plus mou (Fig. 8.6). La durée du choc entre le

marteau et l’enclume ou entre le marteau et le bloc de plomb, qui est de l’ordre de grandeur

de 0.1− 10 ms est suffisamment courte pour qu’on puisse raisonnablement considérer que la

variation de quantité de mouvement a lieu durant un intervalle de temps infinitésimal dt.

https://www.youtube.com/watch?v=S99d9BQmGB0
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Figure 8.6 Mesure de durée d’un choc entre un marteau et une enclume ou un marteau
et un bloc de plomb.

A titre d’exemple, on peut mentionner l’impulsion transmise à une cible par une balle de

fusil ou l’effet de recul d’un glisseur sur un rail à air lors du tir d’un projectile (Fig. 8.7).

Figure 8.7 Lors du choc de la balle de fusil contre la cible en bois, une partie de la
quantité de mouvement est transmise au bois, ce qui fait osciller la cible, contrairement
au verre qui se brise. Lors de l’explosion du combustible (H2) le glisseur subit un effet de
recul pour que la quantité de mouvement totale soit conservée.

8.2.2 Choc élastique

On considère un choc élastique ou une collision élastique entre deux points matériels de

masse m1 et m2 respectivement. Dans un système isolé, un choc élastique entre deux points

matériels est caractérisé par la conservation de la quantité de mouvement totale,

p = p1 + p2 = cste (8.17)

et par la conservation de l’énergie cinétique totale,

T = T1 + T2 = cste (8.18)

Dans le référentiel au repos du deuxième point matériel, le premier point matériel se déplace

initialement selon un axe horizontal Ox et le second point matériel est initialement au repos

(Fig. 8.8),

p1i = p1i x̂ et p2i = 0 ainsi p2i = 0 et T2i = 0 (8.19)

Compte tenu de la condition initiale, les bilans de la quantité de mouvement et de l’énergie

cinétique juste avant et juste après le choc s’écrivent,

p = p1i = p1f + p2f (8.20)

T = T1i = T1f + T2f (8.21)

En projetant l’équation vectorielle du bilan de quantité de mouvement (8.20) selon les lignes

de coordonnées cartésiennes de vecteurs unitaires x̂ et ŷ respectivement, on obtient les deux

équations scalaires suivantes,

selon x̂ : p1i = p1f cos θ1 + p2f cos θ2

selon ŷ : 0 = p1f sin θ1 − p2f sin θ2

(8.22)

https://www.youtube.com/watch?v=1fhfeWvwSKc
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Figure 8.8 Choc élastique d’un point matériel de quantité de mouvement initiale p1i

contre un point matériel initialement au repos, c’est-à-dire p2i = 0. Les quantités de
mouvement finales p1f et p2f sont dans le plan Oxy.

En élevant au carré les équations (8.22), on obtient,

selon x̂ : (p1i − p1f cos θ1)
2

= p2
2f cos2 θ2

selon ŷ : p2
1f sin2 θ1 = p2

2f sin2 θ2

(8.23)

La somme des équations (8.23) s’écrit,

(p1i − p1f cos θ1)
2

+ p2
1f sin2 θ1 = p2

2f (8.24)

L’énergie cinétique (6.57) s’écrit en termes de la quantité de mouvement (2.29) comme,

T =
1

2
mv2 =

p2

2m
(8.25)

Ainsi, l’équation de bilan de l’énergie cinétique (8.21) peut être exprimée comme,

p2
1i

2m1
=

p2
1f

2m1
+

p2
2f

2m2
(8.26)

ce qui implique que,

p2
2f =

m2

m1

(
p2

1i − p2
1f

)
(8.27)

L’identification des équations (8.24) et (8.27) donne,

m2

m1

(
p2

1i − p2
1f

)
= (p1i − p1f cos θ1)

2
+ p2

1f sin2 θ1 (8.28)

qui est remis en forme comme,(
1 +

m2

m1

)
p2

1f − 2 p1i p1f cos θ1 +

(
1− m2

m1

)
p2

1i = 0 (8.29)

En divisant l’équation (8.29) par (1 +m2/m1) p2
1i, on obtient une équation quadratique en

p1f/p1i, (
p1f

p1i

)2

− 2m1

m1 +m2
cos θ1

(
p1f

p1i

)
+
m1 − m2

m1 +m2
= 0 (8.30)

Les solutions de l’équation quadratique (8.30) sont,

p1f

p1i
=
m1v1f

m1v1i
=
v1f

v1i
=

m1

m1 +m2

(
cos θ1 ±

√
cos2 θ1 −

(
1− m2

2

m2
1

))
(8.31)

Masses égales

On considère le cas particulier où les masses sont égales, c’est-à-dire m1 = m2. Dans

ce cas, le principe de conservation de la quantité de mouvement (8.20) et le principe de

conservation de l’énergie cinétique (8.21) se réduisent à,

v1i = v1f + v2f (8.32)

v2
1i = v2

1f + v2
2f (8.33)
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En élevant au carré l’équation (8.32), on obtient,

v2
1i = v2

1f + 2v1f · v2f + v2
2f (8.34)

La différence entre les équations (8.34) et (8.33) se réduit à la condition,

v1f · v2f = 0 ainsi

 si v1f 6= 0 et v2f 6= 0 alors θ1 + θ2 =
π

2
si v1f = 0 alors v2f = v1i

(8.35)

A titre d’exemple, on peut mentionner la collision entre deux pucks de masse égale sur une

table à air horizontale (Fig. 8.9). En réalité, dans cet exemple l’angle entre les pucks est

légèrement inférieur à 90◦ dû à la rotation propre des pucks.

Figure 8.9 Le puck bleu lancé depuis la gauche heurte le puck blanc initialement au repos.
Après le choc, l’angle entre les trajectoires des deux pucks est légèrement inférieur à 90◦.

Choc rectiligne

On considère un choc élastique qui a lieu en ligne droite, c’est-à-dire θ1 = θ2 = 0. Pour

un tel choc, cos θ1 = cos θ2 = 1, et l’équation (8.31) se réduit à,

v1f

v1i
=

m1

m1 +m2

(
1±

√
�1−

(
�1−

m2
2

m2
1

))
=
m1 ±m2

m1 +m2
(8.36)

La solution mathématique (8.36) avec le signe + est à rejeter car si la vitesse finale v1f du

point matériel 1 était égale à sa vitesse initiale v1i, cela signifierait que le choc est virtuel !

Par conséquent, la solution physique s’écrit,

v1f =
m1 − m2

m1 +m2
v1i (8.37)

L’expression (8.27) de la conservation de l’énergie cinétique peut être écrite comme,

1

2
m1 v

2
1i =

1

2
m1 v

2
1f +

1

2
m2 v

2
2f (8.38)

ce qui donne le carré de la vitesse finale du deuxième point matériel,

v2
2f =

m1

m2

(
v2

1i − v2
1f

)
(8.39)

En substituant l’équation (8.37) dans l’équation (8.39),on obtient,

v2
2f =

4m2
1

(m1 +m2)
2 v2

1i (8.40)

Ainsi, on prenant la racine carrée de la relation (8.40), on obtient,

v2f =
2m1

m1 +m2
v1i (8.41)

A l’aide des expressions (8.37) et (8.41), on examine maintenant deux cas particuliers de

chocs rectilignes :
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1) masses égales : m1 = m2 ainsi v1f = 0 et v2f = v1i

2) masse infinie : m1/m2 → 0 ainsi v1f = − v1i et v2f = 0

Le premier cas correspond au choc rectiligne entre deux boules de billard ou entre deux

boules métalliques de même masse, et aussi au choc élastique rectiligne entre deux pucks de

même masse sur une table à air horizontale ou entre deux glisseurs de même masse sur un

rail à air horizontal (Fig. 8.10). Le deuxième cas correspond au choc élastique d’une balle

en chute libre contre le sol ou d’une molécule contre la paroi d’un récipient.

Choc élastique

rectiligne

Figure 8.10 Choc élastique rectiligne entre deux pucks sur une table à air horizontale.
Choc élastique entre deux glisseurs sur un rail à air horizontal.

8.2.3 Choc mou

Un choc parfaitement inélastique, aussi appelé choc mou, entre deux points matériels est

un choc après lequel les deux points matériels restent attachés l’un à l’autre. Un tel choc pro-

voque une perte d’énergie cinétique. On considère un choc mou entre deux points matériels

de masse m1 et m2 respectivement. Le premier point matériel se déplace initialement selon

un axe horizontal Ox et le second point matériel est initialement au repos donc sa quan-

tité de mouvement initiale est nulle, c’est-à-dire p2 = 0, et son énergie cinétique est nulle

également, c’est-à-dire T2 = 0, dans le référentiel d’inertie choisi. Après le choc, la quantité

de mouvement totale du système est pf et l’énergie cinétique totale est Tf (Fig. 8.11). Le

pfp2 = 0p1
x

m2m1

Initial

x

Final

m1 + m2

Figure 8.11 Choc mou d’un point matériel de quantité de mouvement initiale p1 contre
un point matériel initialement au repos, c’est-à-dire p2 = 0. La quantité de mouvement
finale est pf .

principe de conservation de la quantité de mouvement durant le choc s’écrit,

p1 + p2 = pf où p2 = 0 ainsi p1 = pf (8.42)

Le principe de conservation de la quantité de mouvement (8.42) peut être mis sous la forme,

m1 v1 = (m1 +m2)vf (8.43)

On en déduit la vitesse finale du système

vf =
m1

m1 +m2
v1 (8.44)

L’énergie cinétique initiale Ti du point matériel 1 est,

Ti =
1

2
m1 v

2
1 (8.45)

et l’énergie cinétique finale Tf du système est,

Tf =
1

2
(m1 +m2)v2

f (8.46)

https://www.youtube.com/watch?v=0LnbyjOyEQ8
https://www.youtube.com/watch?v=gFvv3rVCV0I
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Compte tenu des énergies cinétiques initiale (8.45) et finale (8.46), on en conclut que la

variation d’énergie cinétique est négative,

∆Ti→f = Tf − T1 =
1

2

m2
1

m1 +m2
v2

1 −
1

2
m1 v

2
1 = − 1

2

m1m2

m1 +m2
v2

1 < 0 (8.47)

Ainsi, le choc mou est un processus dissipatif qui provoque une perte d’énergie cinétique.

Cette énergie est utilisée principalement pour déformer l’objet, comme une boule en pâte

à modeler par exemple. Comme exemple de choc mou, on peut mentionner le choc entre

deux glisseurs qui restent accrochés parce la pointe de l’un vient s’enfoncer dans de la pâte

à modeler fixée sur l’autre (Fig. 2.8).

8.2.4 Coefficient de restitution

Les chocs élastiques et les chocs mous sont des cas particuliers de tout un ensemble de

chocs possibles. L’élasticité d’un choc contre un objet de masse infinie peut être quantifiée

par le coefficient de restitution défini comme le rapport de la norme de la vitesse finale

et de la norme de la vitesse initiale d’un corps,

Coefficients de

restitution 0 < e < 1
e =
‖vf‖
‖vi‖

(8.48)

Il existe trois types de collisions ou de chocs :

1) élastique : e = 1

2) inélastique : 0 < e < 1

3) mou : e = 0

vi

vf

Figure 8.12 Chocs inélastiques d’une balle de tennis (e ≈ 0.90) et d’un ballon de basket
contre le sol (e ≈ 0.85).

A titre d’exemple, on peut mentionner les chocs inélastiques d’une balle de tennis ou d’un

ballon de basket contre le sol (Fig. 8.12). Plus le matériau est dur, moins il se déformera

durant le choc et donc plus le coefficient de restitution sera grand.

8.3 Problème à deux corps

Les systèmes à deux corps sont très courant en mécanique. On peut mentionner le mouve-

ment de la lune autour de la terre, celui de la terre autour du soleil, le mouvement d’étoiles

binaires ou même le mouvement d’un électron et d’un proton dans un atome d’hydrogène.

La dynamique d’un système constitué de deux corps, que l’on peut assimiler à des points

matériels, en absence de force extérieure présente des propriétés de symétrie qu’on cherche

à découvrir. On commence par décrire la dynamique de chaque point matériel par rapport

à un référentiel d’inertie quelconque.

Système terre-lune

8.3.1 Loi du mouvement réduit

On considère un système isolé formé de deux corps considérés comme des points matériels.

Soit r1 le vecteur position du point matériel de masse m1 et r2 le vecteur position du point

matériel de masse m2 (Fig. 8.13).
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F 1    2m1

m2

O

r2

référentiel
r1

F 2    1

Figure 8.13 Problème à deux corps de masse m1 et m2 considérés comme des points
matériels.

Les lois du mouvement (2.32) appliquées aux sous-systèmes des deux points matériels sont

les suivantes :

F 2→1 = m1 r̈1 et F 1→2 = m2 r̈2 (8.49)

où les forces d’interaction F 2→1 et F 1→2 sont des forces intérieures au système constitué

des deux points matériels mais elles sont considérées comme des forces extérieures à chaque

sous-système constitué d’un seul point matériel. Ces deux forces d’interaction sont de nature

quelconque et elles satisfont la loi d’action-réaction (8.1). Pour repérer la position des deux

points matériels, il faut deux vecteurs : r1 et r2. Comme les lois du mouvement (8.49) sont

indépendantes du choix de l’origine O du système d’axes, on peut faire un changement de

variables qui définit de nouveaux vecteurs positions qui rendent mieux compte des symétries

du mouvement. On définit le vecteur position du centre de masse RG du système des

deux points matériel comme,

RG =
m1

M
r1 +

m2

M
r2 (8.50)

et le vecteur position relative r du point matériel 1 par rapport au point matériel 2 de la

manière suivante,

r = r1 − r2 où M = m1 +m2 (8.51)

Le centre de masse est le centre de gravité du système qui sera défini explicitement pour

un système de points matériels lorsqu’on abordera l’étude de la dynamique du solide

indéformable. En dérivant deux fois par rapport au temps les équations (8.50) et (10.21), on

obtient les équations suivantes,

M R̈G = m1 r̈1 +m2 r̈2 et r̈ = r̈1 − r̈2 (8.52)

En prenant la somme des lois du mouvement (8.49), compte tenu des identités (8.52), on

obtient,

F 2→1 + F 1→2 = m1 r̈1 +m2 r̈2 = M R̈G (8.53)

D’après la 3e loi de Newton (8.1), on en conclut alors,

R̈G = 0 ainsi VG = ṘG = cste (8.54)

ce qui signifie que le centre de masse du système est en mouvement rectiligne uniforme ou au

repos en absence de force extérieure au système. La masse réduite µ du système est définie

comme,

1

µ
=

1

m1
+

1

m2
ainsi µ =

m1m2

m1 +m2
=
m1m2

M
(8.55)

En prenant la différence de la première loi du mouvement (8.49) multipliée par m2 et de la

deuxième multipliée par m1 compte tenu de la masse réduite (8.55), on obtient,

m2 F
2→1 − m1 F

1→2 = m1m2 (r̈1 − r̈2) = Mµ r̈ (8.56)

Compte tenu de la 3e loi de Newton (8.1),

m2 F
2→1 − m1 F

1→2 = (m2 +m1)F 2→1 = MF 2→1 (8.57)
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En identifiant les membres de droites des relations (8.56) et (8.57) divisés par la masse totale

du système M , on obtient la loi du mouvement réduit,

F 2→1 = µ r̈ (8.58)

Ainsi, le mouvement du problème à deux corps isolés se réduit au mouvement rectiligne

uniforme du centre de masse et au mouvement réduit d’un objet de masse réduite µ autour

du point matériel 2 pris comme référence. De manière alternative, on définissant le vecteur

position relative comme r = r2 − r1, on aurait tout aussi bien pu prendre le point matériel

1 comme référence.

8.3.2 Quantité de mouvement et énergie cinétique

La quantité de mouvement totale p et l’énergie cinétique totale T du système de deux

points matériels s’écrivent,

p = m1 v1 +m2 v2 (8.59)

T =
1

2
m1 v

2
1 +

1

2
m2 v

2
2 (8.60)

En inversant les vecteurs position (8.50) et (10.21), compte tenu de la définition de la masse

réduite (8.55), on obtient,

r1 = RG +
µ

m1
r et r2 = RG −

µ

m2
r (8.61)

Les dérivées temporelles des positions (8.61) donnent les vitesses,

v1 = VG +
µ

m1
v et v2 = VG −

µ

m2
v (8.62)

En substituant les vitesses (8.62) dans l’expression (8.59) de la quantité de mouvement

totale, celle-ci devient,

p = (m1 +m2)VG = MVG (8.63)

En substituant les équations (8.62) dans l’expression (8.60) de l’énergie cinétique, celle-ci

devient,

T =
1

2
m1

(
VG +

µ

m1
v

)2

+
1

2
m2

(
VG −

µ

m2
v

)2

=
1

2
(m1 +m2)V 2

G +
1

2

(
1

m1
+

1

m2

)
µ2 v2

(8.64)

Compte tenu de la définition de la masse réduite (8.55), l’expression de l’énergie

cinétique (8.64) se réduit à,

T =
1

2
M V 2

G +
1

2
µv2 (8.65)

où le premier terme est l’énergie cinétique constante associée au mouvement du centre de

masse et le deuxième terme est l’énergie cinétique associée au mouvement réduit.

8.3.3 Référentiel du centre de masse

Comme le mouvement du centre de masse est un mouvement rectiligne uniforme, on peut

faire une transformation de coordonnées et définir les vecteurs positions r′1 et r′2 relatifs au

référentiel du centre de masse qui, compte tenu des relations (8.61), s’écrivent,

r′1 = r1 − RG =
µ

m1
r et r′2 = r2 − RG = − µ

m2
r (8.66)

La dérivée temporelle des relations (8.66) est donnée par,

v′1 =
µ

m1
v et v′2 = − µ

m2
v (8.67)
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Compte tenu des expressions (8.66) des vitesses relatives au référentiel du centre de masse,

la quantité de mouvement totale p′ relative au référentiel du centre de masse est nulle,

p′ = m1 v
′
1 +m2 v

′
2 = 0 (8.68)

Compte tenu des expressions (8.66) des vitesses relatives au référentiel du centre de masse et

de l’expression (8.55) de la masse réduite, l’énergie cinétique totale T ′ relative au référentiel

du centre de masse s’écrit,

T ′ =
1

2
m1 v

′ 2
1 +

1

2
m2 v

′ 2
2 =

1

2

(
1

m1
+

1

m2

)
µ2 v2 =

1

2
µv2 (8.69)

L’énergie cinétique T contient un terme de plus que l’énergie cinétique T ′. Ce terme corres-

pond à l’énergie cinétique associée au mouvement du centre de masse du système.
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